An SVD and Derivative Kernel Approach to Learning from Geometric Data
نویسندگان
چکیده
Motivated by problems such as molecular energy prediction, we derive an (improper) kernel between geometric inputs, that is able to capture the relevant rotational and translation invariances in geometric data. Since many physical simulations based upon geometric data produce derivatives of the output quantity with respect to the input positions, we derive an approach that incorporates derivative information into our kernel learning. We further show how to exploit the low rank structure of the resulting kernel matrices to speed up learning. Finally, we evaluated the method in the context of molecular energy prediction, showing good performance for modeling previously unseen molecular configurations. Integrating the approach into a Bayesian optimization, we show substantial improvement over the state of the art in molecular energy optimization.
منابع مشابه
Adaptive Graph via Multiple Kernel Learning for Nonnegative Matrix Factorization
Nonnegative Matrix Factorization (NMF) has been continuously evolving in several areas like pattern recognition and information retrieval methods. It factorizes a matrix into a product of 2 low-rank non-negative matrices that will define parts-based, and linear representation of nonnegative data. Recently, Graph regularized NMF (GrNMF) is proposed to find a compact representation,which uncovers...
متن کاملComposite Kernel Optimization in Semi-Supervised Metric
Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...
متن کاملFace Recognition Based Rank Reduction SVD Approach
Standard face recognition algorithms that use standard feature extraction techniques always suffer from image performance degradation. Recently, singular value decomposition and low-rank matrix are applied in many applications,including pattern recognition and feature extraction. The main objective of this research is to design an efficient face recognition approach by combining many tech...
متن کاملLaplace Variational Iteration Method for Modified Fractional Derivatives with Non-singular Kernel
A universal approach by Laplace transform to the variational iteration method for fractional derivatives with the nonsingular kernel is presented; in particular, the Caputo-Fabrizio fractional derivative and the Atangana-Baleanu fractional derivative with the non-singular kernel is considered. The analysis elaborated for both non-singular kernel derivatives is shown the necessity of considering...
متن کاملOptimal SVD-based Precoding for Secret Key Extraction from Correlated OFDM Sub-Channels
Secret key extraction is a crucial issue in physical layer security and a less complex and, at the same time, a more robust scheme for the next generation of 5G and beyond. Unlike previous works on this topic, in which Orthogonal Frequency Division Multiplexing (OFDM) sub-channels were considered to be independent, the effect of correlation between sub-channels on the secret key rate is address...
متن کامل